Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Clin Transl Sci ; 16(7): 1272-1282, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147890

RESUMO

RO7062931 is an N-acetylgalactosamine (GalNAc)-conjugated single-stranded oligodeoxyribonucleotide complementary to hepatitis B virus RNA. GalNAc conjugation targets the liver through the asialoglycoprotein receptor (ASGPR). This phase I single ascending dose (SAD) study evaluated the safety, tolerability, and pharmacokinetics of RO7062931 in Chinese healthy volunteers. There were four SAD cohorts (0.3, 1.0, 2.0, and 4.0 mg/kg), in each of which healthy volunteers were randomized to a single subcutaneous (s.c.) injection of RO7062931 or matching placebo in a 4:1 ratio. Placebo recipients were pooled as one treatment group for safety assessments. A total of 41 healthy Chinese men received one dose of RO7062931 (n = 33) or placebo (n = 8) and completed the study (85-day follow-up). Adverse events (AEs) were reported in 22 of 33 (66.6%) RO7062931 recipients (n = 80 treatment-related) and seven of eight (87.5%) placebo recipients (n = 1 treatment-related). Apart from two moderate-intensity AEs, all AEs were mild. The most frequently reported AEs were influenza, injection-related reactions, and headache. Dose-proportional increases in plasma RO7062931 exposure were observed between the 0.3 and 1.0 mg/kg doses, whereas a supra-dose-proportional increase occurred at doses greater than or equal to 2.0 mg/kg, along with a marked increase in urinary excretion. Single s.c. dose of RO7062931 up to 4.0 mg/kg were safe and well-tolerated in healthy Chinese volunteers. Pharmacokinetic data suggested that ASGPR saturation had commenced between doses of 2.0 and 4.0 mg/kg. Results were broadly consistent with observations in primarily White subjects in the global first-in-human study of RO7062931.


Assuntos
Oligonucleotídeos , Humanos , Masculino , Relação Dose-Resposta a Droga , Método Duplo-Cego , População do Leste Asiático , Voluntários Saudáveis , Oligonucleotídeos/administração & dosagem
2.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
3.
Muscle Nerve ; 66(1): 76-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466424

RESUMO

INTRODUCTION/AIMS: Patients undergoing nusinersen treatment for spinal muscular atrophy are subject to measurements of platelet count and urine protein before each injection due to concern for platelet depletion and renal dysfunction according to the prescribing information. These tests may be uncomfortable or inconvenient and may cause delays in treatment. However, it is still unclear whether these values have been significantly affected by nusinersen treatment. Our aim in this study was to determine whether these measurements ever reached critical values that necessitated withholding treatment at our center. METHODS: Records from 57 patients treated with nusinersen at our institution between 2017 and 2020 were retrospectively analyzed. Laboratory values for platelet count, random urine protein, and total urine protein:creatinine ratio were collected from all patients before each procedure. RESULTS: Mean patient age was 28.9 years (range, 2-76 years). Mean platelet count was 307 × 109 /L (range, 96-755 × 109 /L; normal lab limits, 150-450 × 109 /L), mean random urine protein was 0.164 g/L (range, <0.05-0.73 g/L), and mean total urine protein:creatinine ratio was 0.885 g per gram creatinine (range, 0.12-9.71 g per gram creatinine). No laboratory values precluded continuing treatment for any patient. DISCUSSION: Although further study on a larger cohort is warranted for more definitive conclusions, it may not be necessary to measure platelet count and urine protein before each nusinersen treatment, particularly in the maintenance phase.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Creatinina/urina , Humanos , Injeções Espinhais , Pessoa de Meia-Idade , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/efeitos adversos , Contagem de Plaquetas , Proteinúria/urina , Estudos Retrospectivos , Adulto Jovem
4.
CNS Drugs ; 36(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080757

RESUMO

BACKGROUND: Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons. OBJECTIVE: The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing. METHODS: Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period. RESULTS: Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels. CONCLUSIONS: Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.


Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.


Assuntos
Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia de Manutenção/métodos , Atrofia Muscular Espinal , Oligonucleotídeos , Esquema de Medicação , Duração da Terapia , Humanos , Injeções Espinhais/métodos , Modelos Biológicos , Atrofia Muscular Espinal/líquido cefalorraquidiano , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/líquido cefalorraquidiano , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/farmacocinética , Resultado do Tratamento
5.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054957

RESUMO

Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Oligonucleotídeos/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Fenômenos Químicos , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Ouro , Humanos , Nanopartículas Metálicas , Tamanho da Partícula
6.
Adv Drug Deliv Rev ; 181: 114041, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763002

RESUMO

RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , RNA/administração & dosagem , Transfecção/métodos , Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Avaliação Pré-Clínica de Medicamentos , Humanos , MicroRNAs/administração & dosagem , Oligonucleotídeos/administração & dosagem , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi
7.
CNS Drugs ; 35(12): 1317-1328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34850360

RESUMO

Survival motor neuron 1 (SMN1), located on chromosome 5q, encodes the survival motor neuron (SMN) protein. A deletion or mutation in SMN1 results in a rare neuromuscular disorder: 5q spinal muscular atrophy (SMA). In such patients, SMN protein production relies solely on SMN2. Nusinersen (Spinraza®) is a modified antisense oligonucleotide approved for the treatment of 5q SMA. Administered intrathecally, it modifies SMN2 pre-messenger RNA splicing, thereby increasing full-length SMN protein levels. Interim analyses from an ongoing phase II study suggest substantial clinical benefits with nusinersen initiation in presymptomatic patients. In phase III studies, nusinersen achieved significant and/or clinically relevant improvements in motor function in symptomatic patients with infantile- and later-onset 5q SMA, and significantly improved event-free survival and overall survival in patients with infantile-onset 5q SMA. Longer term (up to a median of ≈ 6 years of available data), motor function was maintained or improved in symptomatic patients. Nusinersen had a favourable safety profile in clinical studies in presymptomatic and symptomatic patients. Real-world experience supports the effectiveness, safety and tolerability of nusinersen in symptomatic patients of all ages. Thus, nusinersen remains an important treatment option among a broad range of 5q SMA patients.


5q spinal muscular atrophy (SMA) is a rare disease most commonly caused by a defect in the survival motor neuron (SMN) 1 gene, which in a healthy individual produces a protein [spinal motor neuron (SMN) protein] critical to maintaining the nerves that control muscles. Individuals with 5q SMA do not produce this protein in sufficient levels, resulting in muscle weakness and wasting (including the muscles involved in general movement, breathing and swallowing), so increasing the amount of SMN protein by modifying a nearly identical, but low functioning, gene (SMN2) is one way to treat the disease. Nusinersen (Spinraza®) is a treatment that targets SMN2. It is administered via lumbar puncture and is approved for use in presymptomatic and symptomatic individuals with 5q SMA. In both groups of patients, nusinersen increases the amount of SMN protein necessary for the muscles and nerves to work normally, improving motor function. This benefit persists over the longer-term (up to a median of ≈ 6 years of available data), and is well tolerated. Nusinersen continues to be an important treatment option among a broad range of 5q SMA patients.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Humanos , Injeções Espinhais , Atrofia Muscular Espinal/diagnóstico por imagem , Oligonucleotídeos/administração & dosagem
8.
Nat Commun ; 12(1): 7344, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937876

RESUMO

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Assuntos
Linfócitos/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Administração Intravenosa , Transferência Adotiva , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Ácidos Nucleicos Heteroduplexes/administração & dosagem , Ácidos Nucleicos Heteroduplexes/farmacocinética , Ácidos Nucleicos Heteroduplexes/farmacologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/patologia , Distribuição Tecidual/efeitos dos fármacos
9.
Physiol Genomics ; 53(12): 546-555, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796728

RESUMO

Impaired liver regeneration has been considered as a hallmark of progression of alcohol-associated liver disease. Our previous studies demonstrated that in vivo inhibition of the microRNA (miRNA) miR21 can restore regenerative capacity of the liver in chronic ethanol-fed animals. The present study focuses on the role of microRNA regulatory networks that are likely to mediate the miR-21 action. Rats were chronically fed an ethanol-enriched diet along with pair-fed control animals and treated with AM21 (anti-miR-21), a locked nucleic acid antisense to miR-21. Partial hepatectomy (PHx) was performed and miRNA expression profiling over the course of liver regeneration was assessed. Our results showed dynamic expression changes in several miRNAs after PHx, notably with altered miRNA expression profiles between ethanol and control groups. We found that in vivo inhibition of miR-21 led to correlated differential expression of miR-340-5p and anticorrelated expression of miR-365, let-7a, miR-1224, and miR-146a across all sample groups after PHx. Gene set enrichment analysis identified a miRNA signature significantly associated with hepatic stellate cell activation within whole liver tissue data. We hypothesized that at least part of the PHx-induced miRNA network changes responsive to miR-21 inhibition is localized to hepatic stellate cells. We validated this hypothesis using AM21 and TGF-ß treatments in LX-2 human hepatic stellate cells in culture and measured expression levels of select miRNAs by quantitative RT-PCR. Based on the in vivo and in vitro results, we propose a hepatic stellate cell miRNA regulatory network as contributing to the restoration of liver regenerative capacity by miR-21 inhibition.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/efeitos adversos , Redes Reguladoras de Genes/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Regeneração Hepática/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Animais , Linhagem Celular , Dieta/métodos , Modelos Animais de Doenças , Hepatectomia/métodos , Humanos , Hepatopatias Alcoólicas/cirurgia , Masculino , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transfecção , Fator de Crescimento Transformador beta/farmacologia
10.
Arterioscler Thromb Vasc Biol ; 41(12): 2855-2865, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34645280

RESUMO

While the promise of oligonucleotide therapeutics, such as (chemically modified) ASO (antisense oligonucleotides) and short interfering RNAs, is undisputed from their introduction onwards, their unfavorable pharmacokinetics and intrinsic capacity to mobilize innate immune responses, were limiting widespread clinical use. However, these major setbacks have been tackled by breakthroughs in chemistry, stability and delivery. When aiming an intervention hepatic targets, such as lipid and sugar metabolism, coagulation, not to mention cancer and virus infection, introduction of N-acetylgalactosamine aided targeting technology has advanced the field profoundly and by now a dozen of N-acetylgalactosamine therapeutics for these indications have been approved for clinical use or have progressed to clinical trial stage 2 to 3 testing. This technology, in combination with major advances in oligonucleotide stability allows safe and durable intervention in targets that were previously deemed undruggable, such as Lp(a) and PCSK9 (proprotein convertase subtilisin/kexin type 9), at high efficacy and specificity, often with as little as 2 doses per year. Their successful use even the most visionary would not have predicted 2 decades ago. Here, we will review the evolution of N-acetylgalactosamine technology. We shall outline their fundamental design principles and merits, and their application for the delivery of oligonucleotide therapeutics to the liver. Finally, we will discuss the perspectives of N-acetylgalactosamine technology and propose directions for future research in receptor targeted delivery of these gene medicines.


Assuntos
Acetilgalactosamina/química , Doenças Cardiovasculares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Terapia Genética/métodos , Fígado/efeitos dos fármacos , Oligonucleotídeos/administração & dosagem , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Terapêutica com RNAi
11.
Mol Pharm ; 18(10): 3820-3831, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34449222

RESUMO

Telomerase represents an attractive target in oncology as it is expressed in cancer but not in normal tissues. The oligonucleotide inhibitors of telomerase represent a promising anticancer strategy, although poor cellular uptake can restrict their efficacy. In this study, gold nanoparticles (AuNPs) were used to enhance oligonucleotide uptake. "match" oligonucleotides complementary to the telomerase RNA template subunit (hTR) and "scramble" (control) oligonucleotides were conjugated to diethylenetriamine pentaacetate (DTPA) for 111In-labeling. AuNPs (15.5 nm) were decorated with a monofunctional layer of oligonucleotides (ON-AuNP) or a multifunctional layer of oligonucleotides, PEG(polethylene glycol)800-SH (to reduce AuNP aggregation) and the cell-penetrating peptide Tat (ON-AuNP-Tat). Match-AuNP enhanced the cellular uptake of radiolabeled oligonucleotides while retaining the ability to inhibit telomerase activity. The addition of Tat to AuNPs increased nuclear localization. 111In-Match-AuNP-Tat induced DNA double-strand breaks and caused a dose-dependent reduction in clonogenic survival of telomerase-positive cells but not telomerase-negative cells. hTR inhibition has been reported to sensitize cancer cells to ionizing radiation, and 111In-Match-AuNP-Tat therefore holds promise as a vector for delivery of radionuclides into cancer cells while simultaneously sensitizing them to the effects of the emitted radiation.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Oligonucleotídeos/farmacologia , Telomerase/antagonistas & inibidores , Linhagem Celular Tumoral , Ouro , Humanos , Nanopartículas Metálicas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Oligonucleotídeos/administração & dosagem
12.
Muscle Nerve ; 64(4): 404-412, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34231920

RESUMO

Spinal muscular atrophy (SMA) is an inherited lower motor neuron disease. SMA occurs secondary to alterations in the survival motor neuron 1 gene (SMN1), which is the main driver of SMN protein production. The severity of the disease is determined by the number of copies of the SMN2 gene, which is a homolog to SMN1 but not as efficient in protein production. Three medications have recently been approved for the treatment of SMA. Nusinersen is an intrathecal antisense oligonucleotide that alters SMN2 pre-mRNA, onasemnogene abeparvovec-xioi is an intravenous SMN1 gene replacement therapy, and risdiplam is an oral small molecule splicing modifier of SMN2. No head-to-head studies have been conducted comparing these medications, so selection of one of these medications for an individual with SMA can be challenging. In this article we outline the efficacy, safety, and other pertinent factors to consider when selecting a therapy for an individual with SMA. The age of the individual and comorbidities, such as liver or kidney disease, help guide treatment choices. All three of these medications are efficacious, and early initiation is critical for obtaining the best outcomes.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Fármacos Neuromusculares/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Animais , Compostos Azo/administração & dosagem , Compostos Azo/imunologia , Produtos Biológicos/administração & dosagem , Produtos Biológicos/imunologia , Humanos , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/imunologia , Fármacos Neuromusculares/imunologia , Oligonucleotídeos/imunologia , Oligonucleotídeos Antissenso/imunologia , Pirimidinas/administração & dosagem , Pirimidinas/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Resultado do Tratamento
13.
J Cell Mol Med ; 25(17): 8419-8431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312963

RESUMO

Spinal muscular atrophy (SMA) is a genetic neurodegenerative disorder leading to immobilization and premature death. Currently, three alternative therapeutic options are available. Therefore, biomarkers that might reflect or predict the clinical course of the individual patient with treatment are of great potential use. Currently, the antisense oligonucleotide nusinersen is the prevalent and longest validated therapy for SMA. We analysed CSF candidate biomarkers for degenerative CNS processes (namely phosphorylated heavy chain (pNf-H), light-chain neurofilaments (NfL), total tau protein (T-Tau), neurogranin, ß-secretase BACE-1 and alpha-synuclein) in 193 CSF samples of 44 paediatric SMA types 1, 2 and 3 patients before and under nusinersen treatment and related them to standardized clinical outcome scores in a single-centre pilot study. pNf-H and NfL correlated with disease severity and activity, emphasizing their relevance as marker of neuronal loss and clinical outcome. T-Tau was significantly correlated with motor function scores in SMA type 1 making it an interesting marker for treatment response. Additionally, baseline T-Tau levels were elevated in most SMA patients possibly reflecting the extension of neuronal degeneration in paediatric-onset SMA. Further investigations of these CSF proteins might be beneficial for paediatric SMA subtypes and treatment modalities as an indicator for clinical outcome and should be analysed in larger cohorts.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Atrofia Muscular Espinal , Oligonucleotídeos/administração & dosagem , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/metabolismo , Projetos Piloto , Índice de Gravidade de Doença
14.
J Clin Oncol ; 39(26): 2881-2892, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138638

RESUMO

PURPOSE: Patients with myelofibrosis who are relapsed or refractory (R/R) to Janus-associated kinase inhibitors (JAKis) have poor clinical outcomes including dismal overall survival (OS) that ranges between 13 and 16 months. Imetelstat, a telomerase inhibitor, was evaluated in patients with intermediate-2 or high-risk myelofibrosis R/R to JAKi in a phase II multicenter study (ClinicalTrials.gov identifier: NCT02426086). PATIENTS AND METHODS: Patients were randomly assigned to receive either imetelstat 9.4 mg/kg or 4.7 mg/kg intravenous once every 3 weeks. Spleen response (≥ 35% spleen volume reduction) and symptom response (≥ 50% reduction in total symptom score) rates at week 24 were coprimary end points. Secondary end points included OS and safety. RESULTS: Study enrollment was closed early, and patients treated with 4.7 mg/kg were permitted to continue treatment with 9.4 mg/kg. At week 24, spleen and symptom response rates were 10.2% and 32.2% in the 9.4-mg/kg arm and 0% and 6.3% in the 4.7-mg/kg arm. Treatment with imetelstat 9.4 mg/kg led to a median OS of 29.9 months and bone marrow fibrosis improvement in 40.5% and variant allele frequency reduction of driver mutations in 42.1% of evaluable patients. Fibrosis improvement and variant allele frequency reduction correlated with OS. Target inhibition was demonstrated by reduction of telomerase activity and human telomerase reverse transcriptase level and correlated with spleen response, symptom response, and OS. Most common adverse events on both arms were grade 3 or 4 reversible cytopenias. CONCLUSION: In this phase II study of two imetelstat doses, 9.4 mg/kg once every 3 weeks demonstrated clinical benefits in symptom response rate, with an acceptable safety profile for this poor-risk JAKi R/R population. Biomarker and bone marrow fibrosis assessments suggested selective effects on the malignant clone. A confirmatory phase III study is currently underway.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Oligonucleotídeos/administração & dosagem , Mielofibrose Primária/tratamento farmacológico , Telomerase/antagonistas & inibidores , Idoso , Inibidores Enzimáticos/efeitos adversos , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos/efeitos adversos , Mielofibrose Primária/enzimologia , Mielofibrose Primária/mortalidade , Mielofibrose Primária/patologia , Recidiva , Método Simples-Cego , Fatores de Tempo , Resultado do Tratamento , Estados Unidos
15.
Muscle Nerve ; 64(3): 285-292, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105177

RESUMO

INTRODUCTION/AIMS: Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene resulting in the absence of dystrophin. Casimersen is a phosphorodiamidate morpholino oligomer designed to bypass frameshift DMD mutations and produce internally truncated, yet functional, dystrophin protein in patients amenable to exon 45 skipping. Our primary study objective was to evaluate safety and tolerability of casimersen; the secondary objective was to characterize the plasma pharmacokinetics. METHODS: This multicenter, phase 1/2 trial enrolled 12 participants (aged 7-21 years, who had limited ambulation or were nonambulatory) and comprised a 12-week, double-blind dose titration, then an open-label extension for up to 132 weeks. During dose titration, participants were randomized 2:1 to weekly casimersen infusions at escalating doses of 4, 10, 20, and 30 mg/kg (≥2 weeks per dose), or placebo. RESULTS: Participants received casimersen for a mean 139.6 weeks. Treatment-emergent adverse events (TEAEs) occurred in all casimersen- and placebo-treated participants and were mostly mild (over 91.4%) and unrelated to casimersen or its dose. There were no deaths, dose reductions, abnormalities in laboratory parameters or vital signs, or casimersen-related serious AEs. Casimersen plasma concentration increased with dose and declined similarly for all dose levels over 24 hours postinfusion. All pharmacokinetic parameters were similar at weeks 7 and 60. DISCUSSION: Casimersen was well tolerated in participants with DMD amenable to exon 45 skipping. Most TEAEs were mild, nonserious, and unrelated to casimersen. Plasma exposure was dose proportional with no suggestion of plasma accumulation. These results support further studies of casimersen in this population.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/efeitos adversos , Adolescente , Criança , Método Duplo-Cego , Éxons , Humanos , Masculino , Mutação , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Adulto Jovem
16.
Lancet Child Adolesc Health ; 5(7): 491-500, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089650

RESUMO

BACKGROUND: Nusinersen showed a favourable benefit-risk profile in participants with infantile-onset spinal muscular atrophy at the interim analysis of a phase 2 clinical study. We present the study's final analysis, assessing the efficacy and safety of nusinersen over 3 years. METHODS: This phase 2, open-label, multicentre, dose-escalation study was done in three university hospital sites in the USA and one in Canada. Infants aged between 3 weeks and 6 months with two or three SMN2 gene copies and infantile-onset spinal muscular atrophy were eligible for inclusion. Eligible participants received multiple intrathecal loading doses of 6 mg equivalent nusinersen (cohort 1) or 12 mg dose equivalent (cohort 2), followed by maintenance doses of 12 mg equivalent nusinersen. The protocol amendment on Jan 25, 2016, changed the primary efficacy endpoint from safety and tolerability to reaching motor milestones, assessed using the Hammersmith Infant Neurological Examination section 2 (HINE-2) at the last study visit, in all participants who successfully completed the loading dose period and day 92 assessment. The statistical analysis plan was amended on Feb 10, 2016, to include additional analyses of the subgroup of participants with two SMN2 copies. Adverse events were assessed in all participants who received at least one dose of study treatment. The study is registered at ClinicalTrials.gov (NCT01839656). FINDINGS: Between May 3, 2013, and July 9, 2014, 20 symptomatic participants with infantile-onset spinal muscular atrophy (12 boys and 8 girls; median age at diagnosis 78 days [range 0-154]) were enrolled. Median time on study was 36·2 months (IQR 20·6-41·3). The primary endpoint of an incremental improvement in HINE-2 developmental motor milestones was reached by 12 (63%) of 19 evaluable participants. In the 13 participants with two SMN2 copies treated with 12 mg nusinersen, the HINE-2 motor milestone total score increased steadily from a baseline mean of 1·46 (SD 0·52) to 11·86 (6·18) at day 1135, representing a clinically significant change of 10·43 (6·05). At study closure (Aug 21, 2017), 15 (75%) of 20 participants were alive. 101 serious adverse events were reported in 16 (80%) of 20 participants; all five deaths (one in cohort 1 and four in cohort 2) were likely to be related to spinal muscular atrophy disease progression. INTERPRETATION: Our findings are consistent with other trials of nusinersen and show improved survival and attainment of motor milestones over 3 years in patients with infantile-onset spinal muscular atrophy, with a favourable safety profile. FUNDING: Biogen and Ionis Pharmaceuticals.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/patologia , Oligonucleotídeos/administração & dosagem , Ontário , Resultado do Tratamento , Estados Unidos
17.
Ann Clin Transl Neurol ; 8(8): 1622-1634, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165911

RESUMO

OBJECTIVE: We report longitudinal data from 144 type III SMA pediatric and adult patients treated with nusinersen as part of an international effort. METHODS: Patients were assessed using Hammersmith Functional Motor Scale Expanded (HFMSE), Revised Upper Limb Module (RULM), and 6-Minute Walk Test (6MWT) with a mean follow-up of 1.83 years after nusinersen treatment. RESULTS: Over 75% of the 144 patients had a 12-month follow-up. There was an increase in the mean scores from baseline to 12 months on both HFMSE (1.18 points, p = 0.004) and RULM scores (0.58 points, p = 0.014) but not on the 6MWT (mean difference = 6.65 m, p = 0.33). When the 12-month HFMSE changes in the treated cohort were compared to an external cohort of untreated patients, in all untreated patients older than 7 years, the mean changes were always negative, while always positive in the treated ones. To reduce a selection bias, we also used a multivariable analysis. On the HFMSE scale, age, gender, baseline value, and functional status contributed significantly to the changes, while the number of SMN2 copies did not contribute. The effect of these variables was less obvious on the RULM and 6MWT. INTERPRETATION: Our results expand the available data on the effect of Nusinersen on type III patients, so far mostly limited to data from adult type III patients.


Assuntos
Oligonucleotídeos/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Sistema de Registros , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos/administração & dosagem , Índice de Gravidade de Doença , Adulto Jovem
18.
Eur J Pharm Biopharm ; 165: 279-292, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34033881

RESUMO

Nucleic acids therapeutics provide a selective and promising alternative to traditional treatments for multiple genetic diseases. A major obstacle is the development of safe and efficient delivery systems. Here, we report the synthesis of the new cationic gemini amphiphile 1,3-bis[(4-oleyl-1-pyridinio)methyl]benzene dibromide (DOPY). Its transfection efficiency was evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs), a nucleic acid tool for gene silencing and gene repair developed in our laboratory. The interaction of DOPY with PPRHs was confirmed by gel retardation assays, and it forms complexes of 155 nm. We also demonstrated the prominent internalization of PPRHs using DOPY compared to other chemical vehicles in SH-SY5Y, PC-3 and DF42 cells. Regarding gene silencing, a specific PPRH against the survivin gene delivered with DOPY decreased survivin protein levels and cell viability more effectively than with N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) in both SH-SY5Y and PC-3 cells. We also validated the applicability of DOPY in gene repair approaches by correcting a point mutation in the endogenous locus of the dhfr gene in DF42 cells using repair-PPRHs. All these results indicate both an efficient entry and release of PPRHs at the intracellular level. Therefore, DOPY can be considered as a new lipid-based vehicle for the delivery of therapeutic oligonucleotides.


Assuntos
Derivados de Benzeno/química , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Oligonucleotídeos/administração & dosagem , Compostos de Piridínio/química , Linhagem Celular Tumoral , Inativação Gênica , Doenças Genéticas Inatas/genética , Humanos , Lipossomos , Oligonucleotídeos/genética , Mutação Puntual , Survivina/genética , Transfecção/métodos
20.
Arch Toxicol ; 95(6): 2123-2136, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961089

RESUMO

Antisense oligonucleotides (ASOs) are a promising therapeutic modality. However, failure to predict acute kidney injury induced by SPC5001 ASO observed in a clinical trial suggests the need for additional preclinical models to complement the preceding animal toxicity studies. To explore the utility of in vitro systems in this space, we evaluated the induction of nephrotoxicity and kidney injury biomarkers by SPC5001 in human renal proximal tubule epithelial cells (HRPTEC), cultured in 2D, and in a recently developed kidney proximal tubule-on-a-chip. 2D HRPTEC cultures were exposed to the nephrotoxic ASO SPC5001 or the safe control ASO 556089 (0.16-40 µM) for up to 72 h, targeting PCSK9 and MALAT1, respectively. Both ASOs induced a concentration-dependent downregulation of their respective mRNA targets but cytotoxicity (determined by LDH activity) was not observed at any concentration. Next, chip-cultured HRPTEC were exposed to SPC5001 (0.5 and 5 µM) and 556089 (1 and 10 µM) for 48 h to confirm downregulation of their respective target transcripts, with 74.1 ± 5.2% for SPC5001 (5 µM) and 79.4 ± 0.8% for 556089 (10 µM). During extended exposure for up to 20 consecutive days, only SPC5001 induced cytotoxicity (at the higher concentration; 5 µM), as evaluated by LDH in the perfusate medium. Moreover, perfusate levels of biomarkers KIM-1, NGAL, clusterin, osteopontin and VEGF increased 2.5 ± 0.2-fold, 3.9 ± 0.9-fold, 2.3 ± 0.6-fold, 3.9 ± 1.7-fold and 1.9 ± 0.4-fold respectively, in response to SPC5001, generating distinct time-dependent profiles. In conclusion, target downregulation, cytotoxicity and kidney injury biomarkers were induced by the clinically nephrotoxic ASO SPC5001, demonstrating the translational potential of this kidney on-a-chip.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Oligonucleotídeos Antissenso/toxicidade , Oligonucleotídeos/toxicidade , Injúria Renal Aguda/patologia , Biomarcadores/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Túbulos Renais Proximais/patologia , L-Lactato Desidrogenase/metabolismo , Dispositivos Lab-On-A-Chip , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...